Step 3. $\zeta(1+it) \neq 0$.

Recall from Step 2 that for c > 1 (*strict* inequality), we have

$$\int_{1}^{x} \psi(t) dt = \frac{1}{2}x^{2} - \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) x^{s+1} \frac{ds}{s(s+1)} + O(1) .$$
 (25)

We hope to prove the Prime Number Theorem in the form $\psi(t) \sim t$. It can be shown that this implies $\int_1^x \psi(t) dt \sim x^2/2$. Thus we expect that the integral over the vertical line $c - i\infty$ to $c + i\infty$ in (25) to be an error term, i.e. smaller in magnitude than the main term. Yet the integrand contains a factor x^{s+1} which is of magnitude x^{c+1} . If c > 1 this term, x^{c+1} , is larger than the expected main term, $x^2/2$. So we can only have any hope of proving the Prime Number Theorem if we can choose c = 1. But, is F well-defined on the line Re s = 1?

From its definition F(s) has $\zeta(s)$ on the denominator which we know is non-zero for Re s > 1, but is it non-zero on Re s = 1?

Lemma 6.19 For $\theta \in \mathbb{R}$, we have

$$3 + 4\cos\theta + \cos 2\theta \ge 0.$$

Proof Start from the double angle formula

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1.$$

Then

$$3 + 4\cos\theta + \cos 2\theta = 2 + 4\cos\theta + 2\cos^2\theta$$
$$= 2(1 + \cos\theta)^2 \ge 0.$$

Logarithms of complex numbers Recall that if $w \in \mathbb{C}$ then $w = re^{i\theta}$ for some $r \ge 0$ and θ . The logarithm of w is given by $\log w = \log r + i\theta$. But in fact $w = re^{i(\theta+2\pi k)}$ for any $k \in \mathbb{Z}$, in which case $\log w = \log r + i(\theta + 2\pi k)$. Thus the logarithm is **not** unique. Nonetheless, the logarithm of the modulus |w| is unique and equals

$$\log |w| = \log r = \operatorname{Re}\left(\log r + i\left(\theta + 2\pi k\right)\right) = \operatorname{Re}\log w,$$

the real part of any logarithm of z. In particular, it can be shown from the Euler product for the Riemann zeta function that a logarithm of $\zeta(s)$ is given by

$$\log \zeta(s) = \sum_{p} -\log\left(1 - \frac{1}{p^s}\right) = \sum_{p} \sum_{m=1}^{\infty} \frac{1}{mp^{ms}}.$$

Then using $\log |\zeta(s)| = \operatorname{Re} \log \zeta(s)$, we get

$$\log|\zeta(s)| = \operatorname{Re}\sum_{p}\sum_{m=1}^{\infty}\frac{1}{mp^{ms}}$$
(26)

for $\operatorname{Re} s > 1$. Yet

$$\operatorname{Re}\frac{1}{p^{ms}} = \operatorname{Re}\frac{e^{-itm\log p}}{p^{m\sigma}} = \frac{\cos\left(-mt\log p\right)}{p^{m\sigma}} = \frac{\cos\left(\theta_{m,t,p}\right)}{p^{m\sigma}},$$

where $\theta_{m,t,p} = -mt \log p$. Hence

$$\log |\zeta(s)| = \sum_{p} \sum_{m=1}^{\infty} \frac{\cos \left(\theta_{m,t,p}\right)}{m p^{m\sigma}}.$$

Lemma 6.20 For $\sigma > 1$ we have

$$|\zeta(\sigma)|^3 |\zeta(\sigma+it)|^4 |\zeta(\sigma+2it)| \ge 1.$$

 $\mathbf{Proof}\ \mathbf{Consider}$

$$\log \left(|\zeta(\sigma)|^3 |\zeta(\sigma+it)|^4 |\zeta(\sigma+2it)| \right)$$

= $3 \log |\zeta(\sigma)| + 4 \log |\zeta(\sigma+it)| + \log |\zeta(\sigma+2it)|$
= $\sum_p \sum_{m=1}^{\infty} \left(\frac{3 \cos \left(\theta_{m,0,p}\right) + 4 \cos \left(\theta_{m,t,p}\right) + \cos \left(\theta_{m,2t,p}\right)}{mp^{m\sigma}} \right).$

Yet $\theta_{m,0,p} = 0$ and $\theta_{m,2t,p} = 2\theta_{m,t,p}$ and so this last expression equals

$$\sum_{p} \sum_{m=1}^{\infty} \left(\frac{3 + 4\cos\left(\theta_{m,t,p}\right) + \cos\left(2\theta_{m,t,p}\right)}{mp^{m\sigma}} \right) \ge 0$$

by Lemma 6.19. Hence

$$|\zeta(\sigma)|^{3} |\zeta(\sigma+it)|^{4} |\zeta(\sigma+2it)| \ge e^{0} = 1.$$

Theorem 6.21 The Riemann zeta function has no zeros in the half-plane $\operatorname{Re} s \geq 1$.

Proof We already know that $\zeta(s)$ is non-zero for $\operatorname{Re} s > 1$, so it remains only to prove there are no zeros on $\operatorname{Re} s = 1$.

Assume for contradiction that $\zeta(1 + it_0) = 0$ for some $t_0 \neq 0$ (recall that there is a pole at s = 1 and so is not zero there).

Recall from Theorem 6.12 that ζ is holomorphic at $1+it_0$ and thus its derivative exists there. By definition the derivative is a limit as $s \to 1+it_0$ along any path in \mathbb{C} . Choose the horizontal line to the right of $1+it_0$ when $s = \sigma + it_0$ and $\sigma \to 1 + .$ Hence

$$\zeta'(1+it_0) = \lim_{\sigma \to 1+} \frac{\zeta(\sigma+it_0) - \zeta(1+it_0)}{\sigma - 1} = \lim_{\sigma \to 1+} \frac{\zeta(\sigma+it_0)}{\sigma - 1},$$

having used the assumption $\zeta(1 + it_0) = 0$.

From Theorem 6.12, we saw that $\zeta(s)$ has a simple pole at s = 1, residue 1, i.e.

$$\lim_{\sigma \to 1+} (\sigma - 1) \zeta(\sigma) = 1.$$

Also, $\zeta(s)$ is holomorphic at $1 + 2it_0$, i.e. differentiable and thus continuous there, in which case

$$\lim_{\sigma \to 1+} \zeta(\sigma + 2it_0) = \zeta(1 + 2it_0).$$

We want to combine these three facts so consider, for $\sigma > 1$,

$$\left| (\sigma-1)\,\zeta(\sigma) \right|^3 \left| \frac{\zeta(\sigma+it_0)}{\sigma-1} \right|^4 \left| \zeta(\sigma+2it_0) \right| = \frac{\left| \zeta(\sigma) \right|^3 \left| \zeta(\sigma+it_0) \right|^4 \left| \zeta(\sigma+2it_0) \right|}{\sigma-1} \\ \ge \frac{1}{\sigma-1}, \tag{27}$$

by Lemma 6.20. Now let $\sigma \to 1+$, when the left had side of (27) tends to the finite limit

$$1^{3} \left| \zeta'(1+it_{0}) \right|^{4} \left| \zeta(1+2it_{0}) \right|,$$

whilst the right hand side is unbounded.

This contradiction means that our original assumption was false, and thus $\zeta(s)$ has **no** zeros on Re s = 1.

We can now see what was required in Lemma 6.19 for this proof to succeed. It was important that the coefficients in $3 + 4\cos\theta + \cos 2\theta$ were all positive integers and that the constant term 3, was less then at least one of the other coefficients, here 4.

In a later result we will show that $\zeta(s)$ in fact has no zeros slightly to the left of Re s = 1.

Recall that zeros and poles of $\zeta(s)$ correspond with poles of the logarithmic derivative $\zeta'(s)/\zeta(s)$. Thus since $\zeta(s) \neq 0$ on Re s = 1 we conclude that $\zeta'(s)/\zeta(s)$ has no poles on Re s = 1, $s \neq 1$. We defined F(s) as $\zeta'(s)/\zeta(s) + \zeta(s)$ because it has no pole at s = 1. Hence we conclude that F(s) is well-defined on the closed half plane Re $s \geq 1$.

Appendix for Step 3

This discussion comes from GJOJ pp 70-71

Recall that for $z \in \mathbb{C}$, a logarithm of z is any w for which $e^w = z$. So logarithms are not unique, they can differ by multiples of $2\pi i$. Assume that $z_j \in \mathbb{C}$ are given for $j \ge 1$, and logarithms w_j chosen for each z_j such that $\sum_j w_j$ converges to w. Then

$$e^{w} = e^{\lim_{n \to \infty} \sum_{j=1}^{n} w_{j}} = \lim_{n \to \infty} e^{\sum_{j=1}^{n} w_{j}}$$
by the continuity of e^{z} on \mathbb{C} ,
$$= \lim_{n \to \infty} \prod_{j=1}^{n} e^{w_{j}} = \lim_{n \to \infty} \prod_{j=1}^{n} z_{j}$$
$$= \prod_{j=1}^{\infty} z_{j},$$

by the definition of infinite products. Thus w is a logarithm of the product.

We can use this to find a logarithm of the ζ -function from

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1},$$

for $\operatorname{Re} s > 1$. the Euler product.

If we can find a logarithm for $(1 - 1/p^s)^{-1}$ for each prime p and show that the sum of the individual logarithms converges, then this lemma says that this sum of logarithms will be a logarithm of the Euler Product and thus of the Riemann zeta function.

Lemma 6.22

$$\sum_{m=1}^{\infty} \frac{z^m}{m}$$

is a logarithm of 1/(1-z) for |z| < 1.

Proof Let

$$h(z) = \sum_{m=1}^{\infty} \frac{z^m}{m}.$$

We need to show that

$$e^{h(z)} = \frac{1}{1-z}$$
, i.e. $(1-z)e^{h(z)} = 1$.

Consider

$$\frac{d}{dz}(1-z)e^{h(z)} = -e^{h(z)} + (1-z)h'(z)e^{h(z)} = ((1-z)h'(z)-1)e^{h(z)}.$$

But

$$h'(z) = \sum_{m=1}^{\infty} m \frac{z^{m-1}}{m} = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z},$$

for |z| < 1. Allowable since a power series can be differentiated term-by-term within its radius of convergence. Working back,

$$\frac{d}{dz}(1-z)e^{h(z)} = 0$$
 i.e. $(1-z)e^{h(z)} = c$,

for some constant c. Put z = 0 to see that c = 1 as required.

Thus a logarithm of $(1 - 1/p^s)^{-1}$ is $\sum_{m=1}^{\infty} 1/mp^{ms}$. And the sum over p of these individual logarithms converges (absolutely) since

$$\sum_{p} \left| \sum_{m=1}^{\infty} \frac{1}{mp^{ms}} \right| \le \sum_{p} \sum_{m=1}^{\infty} \frac{1}{mp^{m\sigma}} \le \sum_{p} \sum_{m=1}^{\infty} \frac{1}{p^{m\sigma}} = \sum_{p} \frac{1}{p^{\sigma} - 1},$$

having summed the inner geometric series, and this sum over primes converges for $\sigma > 1$. Hence the Lemma tells us that

$$\sum_{p} \sum_{m=1}^{\infty} \frac{1}{mp^{ms}}$$

is a logarithm of $\zeta(s)$ for $\operatorname{Re} s > 1$.

Further, there is a general result

Theorem 6.23 Assume that

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|$$

converges, then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} \text{ and } \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$$

both converge and to the same value S, say. Further, if $\sum_{n=1}^{\infty} c_n$ is any series obtained by rearranging the term a_{ij} as a single series, then it also converges to S.

In our case we rearrange the $a_{p,m}=1/mp^{ms}$ in increasing order of p^m and deduce that the Dirichlet Series

$$\sum_{n=1}^{\infty} \frac{a(n)}{n^s},$$

where a(n) = 1/m, if $n = p^m$ for some prime p, 0 otherwise, is convergent in Re s > 1.